
Intro to K8s Helm and
Operators

Joshua Haupt
hauptj.com

joshua@hauptj.com

https://hauptj.com/
mailto:joshua@hauptj.com

What is Kubernetes

•K8s is an open-source container orchestration platform for
automating the deployment, scaling, and management of
containerized software.

•Originally created by Google in 2014

•Maintained by the Cloud Native Computing Foundation (CNCF)

What is Containerization?

•Containerization is the packaging of software with operating system
libraries and required dependencies to run it in a single executable
package.

•Adoption became popular with the release of Docker

What is Helm?

• “Helm helps you manage Kubernetes applications — Helm Charts
help you define, install, and upgrade even the most complex
Kubernetes application.”

• “Charts are easy to create, version, share, and publish — so start
using Helm and stop the copy-and-paste.”

• Source: helm.sh

https://helm.sh/

Helm V2: Client Server model

•Helm V2: Two parts
• Helm: client that runs on your local system
• Tiller: server that runs inside your Kubernetes cluster

• Manages installations of charts

• Considered security risk as it requires root permissions

•EOL

Helm V3: Client Model

•Helm V3:
• Tiller removed
• All templating is now done on the client side

What it provides

•A package manager for Kubernetes with templating
• Flow Control
• Version control
• Dependency management

•Written in Golang
• Utilizes the Go template rendering engine

https://golang.org/pkg/text/template/

Flow Control

•Enables specifying variables for specific environments
• Local, development, production

•Control Structures
• If / else –conditional blocks
• With – specify a scope

• Like an “if” statement
• Range – for / “for each” loop

•Chart template guide on Flow Control

https://helm.sh/docs/chart_template_guide/control_structures/

Pipelining Example – if / else

{{- if eq .Values.stage “prod” -}}

debug: false

host: example.com

port: 443

{{- else if eq .Values.stage “dev” -}}

debug: true

host: dev.example.com

port: 443

{{- else -}}

debug: true

host: local.example.com

port: 8443

{{- end -}}

Pipelining Example – if / else

{{- if eq .Values.stage “prod” -}}

debug: false

host: example.com

port: 443

{{- else if eq .Values.stage “dev” -}}

debug: true

host: dev.example.com

port: 443

{{- else -}}

debug: true

host: local.example.com

port: 8443

{{- end -}}

•Note: a dash and a space
removes whitespace
• {{- :removes whitespace from the

left
• -}} : removes whitespace from the

right

Pipelining Example - with

{{- with .Values.production -}}

debug: false

host: example.com

port: 443

log: {{ .path | quote }}

{{- end -}}

•Note: (.) specifies the current
scope

•With changes the scope

• Scope is reset with {{end}}

•Values.yaml:
production:

path: /dev/null

Flow Control - range

users: |-

{{- range .Values.users }}

- {{ . | title | quote }}

{{- end }}

•Values.yaml
users:

- Alice

- Bob

- Charlie

Version Control with ChartMuseam

•Open source repository for Helm charts

• Supports many 3rd party object storage platforms for storage

• Supports local storage on the filesystem

• github.com/helm/chartmuseum

https://github.com/helm/chartmuseum

GitLab Helm Chart Repo Support

•Basic support introduced in GitLab 14.1 in all tiers including
gitlab.com SaaS

•Helm charts in the Package Registry | GitLab

https://docs.gitlab.com/ee/user/packages/helm_repository/index.html

Dependency Management

•Umbrella / parent charts that reference dependency charts
• Example: Bitnami Kube Prometheus Chart

https://github.com/bitnami/charts/blob/main/bitnami/kube-prometheus/Chart.yaml

Creating a simple chart

•$ helm create mychart

•$ tree mychart

•The templates directory is
where Helm reads YAML
definitions for Kubernetes
objects such as Services and
Deployments

•Chart.yaml contains the
metadata that describes and
manages the version of the chart

•Values.yaml contains the default
values that are set at the time of
deployment

ChartMuseam via Docker

docker run --rm -it \

 -p 8080:8080 \

 -e DEBUG=1 \

 -e STORAGE=local \

 -e STORAGE_LOCAL_ROOTDIR=/charts \

 -v $(pwd)/charts:/charts \

 chartmuseum/chartmuseum:latest

Kubernetes Operators

•Extend functionality by defining custom resources and controllers

•An Operator is a K8s controller that is specifically designed to manage
and operate a particular custom resource

•Enable the automation of tasks without complex scripting

Kubernetes Controllers

•Component of the K8s system responsible for managing and
maintaining the desired states of the resources in a cluster

Live Walkthrough

•Terraform

•Helm

•DigitalOcean Managed K8s

•Kube Prometheus Stack Helm Chart

•Nginx Ingress Controller

https://www.terraform.io/
https://helm.sh/
https://www.digitalocean.com/products/kubernetes
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://kubernetes.github.io/ingress-nginx/

