Intro to K8s Helm and
Operators

Joshua Haupt
hauptj.com

joshua@hauptj.com

https://hauptj.com/
mailto:joshua@hauptj.com

What is Kubernetes

* K8s is an open-source container orchestration platform for
automating the deployment, scaling, and management of
containerized software.

* Originally created by Google in 2014
* Maintained by the Cloud Native Computing Foundation (CNCF)

What is Containerization?

e Containerization is the packaging of software with operating system
libraries and required dependencies to run it in a single executable
package.

* Adoption became popular with the release of Docker

What is Helm?

* “Helm helps you manage Kubernetes applications — Helm Charts
help you define, install, and upgrade even the most complex
Kubernetes application.”

(o

* “Charts are easy to create, version, share, and publish — so start
using Helm and stop the copy-and-paste.”

e Source: helm.sh

https://helm.sh/

Helm V2: Client Server model

* Helm V2: Two parts
* Helm: client that runs on your local system

* Tiller: server that runs inside your Kubernetes cluster
* Manages installations of charts
* Considered security risk as it requires root permissions

*EOL

Helm V3: Client Model

e Helm V3:

* Tiller removed
 All templating is now done on the client side

What it provides

* A package manager for Kubernetes with templating
* Flow Control
* Version control
* Dependency management

* Written in Golang
 Utilizes the Go template rendering engine

https://golang.org/pkg/text/template/

Flow Control

* Enables specifying variables for specific environments
* Local, development, production
e Control Structures

* |If / else —conditional blocks
* With — specify a scope

 Like an “if” statement
e Range — for / “for each” loop

* Chart template guide on Flow Control

https://helm.sh/docs/chart_template_guide/control_structures/

Pipelining Example — if / else

{{- if eq Values.stage “prod” -}}
debug: false
host: example.com
port: 443

{{- else if eq .Values.stage “dev” -}}
debug: true
host: dev.example.com
port: 443

{{- else -}}
debug: true
host: local.example.com
port: 8443

{{- end -}}

Pipelining Example — if / else

{{- if eq Values.stage “prod” -}} * Note: a dash and a space

removes whitespace

I debug: false

host: example.com

port: 443 * {{- :removes whitespace from the
{{- else if eq .Values.stage “dev” -}} left
debug: true * -}}: removes whitespace from the
host: dev.example.com right
port: 443
{{- else -}}

‘ debug: true
host: local.example.com
port: 8443

{{- end -}}

|

Pipelining Example - with

{{- with Values.production -}} * Note: (.) specifies the current
debug: false scope
host: example.com * With changes the scope
oort: 443 * Scope is reset with {{end}}
log: {{ .path | quote }} *Values.yaml:
production:

{{' end '}} path: /dev/null

Flow Control - range

users: |- *Values.yaml
{{- range Values.users }} userszI
- Alice
-{{. | title | quote }} Bt

{{-end }} - Charlie

Version Control with ChartMuseam

* Open source repository for Helm charts
e Supports many 3" party object storage platforms for storage
e Supports local storage on the filesystem

e sithub.com/helm/chartmuseum

https://github.com/helm/chartmuseum

GitLab Helm Chart Repo Support

* Basic support introduced in GitLab 14.1 in all tiers including
gitlab.com Saa$S

* Helm charts in the Package Registry | GitLab

https://docs.gitlab.com/ee/user/packages/helm_repository/index.html

Dependency Management

* Umbrella / parent charts that reference dependency charts
* Example: Bitnami Kube Prometheus Chart

https://github.com/bitnami/charts/blob/main/bitnami/kube-prometheus/Chart.yaml

Creating a simple chart

S helm create mychart * The templates directory is

where Helm reads YAML

definitions for Kubernetes

objects such as Services and
Deployments

bt e Chart.yaml contains the
| -- NOTES.txt

metadata that describes and
|-- _helpers.tpl .
- e manages the version of the chart
-- ingress.yaml

* Values.yaml contains the default
values that are set at the time of
deployment

S tree mychart

mychart
-- Chart.yaml

" -- service.yaml

ChartMuseam via Docker

docker run --rm -it \
-p 8080:8080 \
-e DEBUG=1\
-e STORAGE=local \
-e STORAGE_LOCAL_ROOTDIR=/charts \

-v S(pwd)/charts:/charts \
chartmuseum/chartmuseum:latest

Kubernetes Operators

e Extend functionality by defining custom resources and controllers

* An Operator is a K8s controller that is specifically designed to manage
and operate a particular custom resource

* Enable the automation of tasks without complex scripting

Kubernetes Controllers

* Component of the K8s system responsible for managing and
maintaining the desired states of the resources in a cluster

Live Walkthrough

* Terraform

e Helm

e DigitalOcean Managed K8s

e Kube Prometheus Stack Helm Chart

* Nginx Ingress Controller

https://www.terraform.io/
https://helm.sh/
https://www.digitalocean.com/products/kubernetes
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://kubernetes.github.io/ingress-nginx/

